When she drew two intersecting circles, as shown, Tatiana divided the space inside the circles into three regions. When drawing two intersecting squares, what is the largest number of regions inside one or both of the squares that Tatiana could create?
A. 4
B. 6
C. 7
D. 8
E. 9
E. 9
Suppose one square has been drawn. This creates one region. Now think about what happens when you draw the second square starting at a point on one side of the first square. One extra region is created each time a side of the second square intersects the first square. Therefore, if there are k points of intersection, there will be k+1 regions when you have finished drawing the second square. However, each side of the second square can intersect at most two sides of the first square. So there can be at most 8 intersection points. Therefore there can be at most 9 regions. The diagram below shows what such an arrangement would look like with 9 regions.
Be up-to-date with our recent updates, new problems and answers!
Our goal at this course is to enhance our students’ mathematical intuition by focusing on a deep understanding of mathematical concepts and to enable them to link different concepts and apply their knowledge to solve mathematical problems to help them to improve their performance at Maths exams.
This course guides you through the fundamentals of Python programming using an interactive Python library known as Turtle.
This course encompasses a range of Geometry topics such as coordinate and spatial geometry, introductory trigonometry, angles, parallel lines, congruent and similar triangles, polygons, circles, the Pythagorean Theorem, and more. Emphasis will be placed on reinforcing Algebra skills and enhancing critical thinking through problem-solving in both mathematical and real-world contexts.
Ask about our courses and offerings, and we will help you choose what works best for you.